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Abstract

This paper examines the extent to which Gaussian orthogonal ensemble (GOE) statistics is applicable to the natural

frequencies of a dynamic system. The natural frequencies of a simply supported plate or a rectangular room tend to have

an exponential spacing distribution. However, any disruption of the system symmetries has been shown to promote GOE

statistics, for which the modal spacing distribution is Rayleigh. In this paper, the effect of a range of uncertainties on the

modal statistics of structures is numerically characterised. This is achieved by examining the modal statistics of mass

and/or spring loaded plates and plates coupled by springs. The natural frequencies of the aforementioned structures have

been derived using the Lagrange–Rayleigh–Ritz technique. The degree of uncertainty required to effect the transition from

an exponential to a Rayleigh distribution and to achieve universality of the statistical properties is investigated. A further

measure of the randomness required to produce GOE statistics can be obtained by examining the amount of mixing and

veering between the modes of a dynamic system. The statistical overlap factor is a non-dimensional parameter related to

the random variation in an individual natural frequency from its mean value, and is useful to quantify the frequency

beyond which the resonant behaviour of individual modes no longer dominates the response statistics. Using a first-order

perturbation analysis, an approximate expression for the statistical overlap factor has been developed for the randomised

plates, to estimate the modal range for the occurrence of GOE statistics.

Crown Copyright r 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

There has been much recent interest in predicting the response of stochastic systems [1–3], since most
practical structures exhibit some form of randomness due to variability in their geometric or material
properties. Prediction methods for the response of a structure with uncertain properties generally require some
model for the statistics of the natural frequencies of the system. Earlier work on the natural frequency
statistics of dynamic systems used a Poisson point process model to describe the distribution of the spacing
between successive natural frequencies, which results in an exponential distribution of the modal spacing [4].
However, the Poisson model, resulting in an exponential distribution of the modal spacings, is only valid for
ee front matter Crown Copyright r 2009 Published by Elsevier Ltd. All rights reserved.
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systems such as a perfect rectangular plate or a perfect box-shaped room, where these systems have many
symmetries [5]. In these examples, it is possible for frequencies from different symmetry groups to coincide,
giving a high probability of small modal spacings. Any disturbance of the system will cause coupling of the
symmetry groups and veering between closely spaced natural frequencies, leading to a reduced probability of
small spacings. It is now thought that the natural frequency statistics of practical structures, with randomness
in their geometric or material properties, will conform to those associated with a particular type of random
matrix known as the Gaussian orthogonal ensemble (GOE), and this assumption has been adopted in recent
response prediction methods [5–8]. One feature of the GOE is that the distribution of spacings between
successive natural frequencies is Rayleigh, rather than exponential, and this constitutes the ‘‘Wigner surmise’’
of random matrix theory [5].

The transition from an exponential to a Rayleigh distribution for a single dynamic system has been
experimentally and empirically validated by several authors, by deforming the geometry of rectangular blocks
[6–8]. The effect of symmetry breaking on the distribution of the frequency spacings was examined by cutting
slits into aluminium blocks [6], deforming the rectangular boundaries to a Sinai billiard shape [7], and by
adding mass and stiffness perturbations to steel plates [8,9]. Uncertainty also applies to the response statistics
of an ensemble of nominally identical structures such as successive items from a production line, where
uncertainties arise from the assembly process and manufacturing tolerances [1,10]. In this case, the natural
frequencies and modes shapes of a system can be thought of as being random across the ensemble. A measure
of the randomness across the ensemble required to produce GOE statistics can be obtained using a non-
dimensional parameter called the statistical overlap factor, S [11]. Statistical overlap occurs when there is
sufficient random variation in an individual natural frequency of a system from its mean value across the
ensemble. Low values of the statistical overlap factor imply that the natural frequencies are in well defined
positions and move by only a small amount from their mean value. As S increases, the natural frequencies
move significantly and may veer from one another. In this case, there will be good ‘mixing’ of the modes of the
perfect structure across the ensemble, that is, a particular mode shape of a given structure has contributions
from a number of the modes of the nominally perfect system [10].

This paper numerically characterises the effect of a range of structural uncertainties on the modal statistics
of dynamic structures, and the degree of uncertainty required to achieve universality of the statistical
properties. The work of Brown [9] has been extended to investigate the modal statistics of complex systems
with a range of uncertainty, corresponding to uncertainty due to mass and stiffness perturbations, uncertainty
at the boundaries of a structure and uncertainty in the coupling between structures. A range of structures are
examined corresponding to a plate with masses and/or linear springs added at random locations, a plate with
torsional springs attached at random locations along its boundary edges and two plates coupled by linear
springs at random locations. For the aforementioned structures, equations of motion in modal space were
developed using the Lagrange–Rayleigh–Ritz technique. Dynamic uncertainty across an ensemble of
nominally identical structures is also investigated using a non-dimensional parameter called the statistical
overlap factor. Based on a first-order perturbation analysis and using Rayleigh’s quotient, an approximate
expression for S was developed for the mass and spring loaded plates. By varying the size and number of
the added masses and springs, the expression for S makes it possible to estimate the modal range for the
occurrence of GOE statistics.
2. Natural frequencies of random plate structures

2.1. Plate with added masses and/or linear springs to ground

In this section, the equations of motion in modal space of a rectangular plate loaded by randomly located
lumped masses and springs-to-ground are derived using the Lagrange–Rayleigh–Ritz technique [12]. The plate
is simply supported, resulting in the following expression for the eigenfunctions fmnðxÞ ¼ fmðxÞfnðyÞ, where
fmðxÞ ¼ sinðmpx=LxÞ and fnðyÞ ¼ sinðnpx=LyÞ are the shape functions in the x and y directions, respectively.
m, n are, respectively, the mode numbers of the shape functions in the x and y directions. The flexural
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displacement of the bare plate (in the absence of added mass) is given by

wðx; y; tÞ ¼
X
mn

qmnðtÞcmnðxÞ (1)

where qmn is the modal coordinate. cmnðxÞ ¼ cmðxÞcnðyÞ are the mass normalised mode shapes which satisfy
the following orthogonality condition:Z Lx

0

Z Ly

0

rhcmncm0n0 dxdy ¼
1; mn ¼ m0n0

0; mnam0n0

(
(2)

Lx and Ly are, respectively, the lengths of the plate in the x and y directions, h is the plate thickness and r is the
density. For a plate simply supported on all four sides, the mass-normalised eigenfunctions are given by

cmnðxÞ ¼
1ffiffiffiffiffiffiffiffi
Mn

p fmnðxÞ ¼
1ffiffiffiffiffiffiffiffi
Mn

p sin
mpx

Lx

� �
sin

npy

Ly

� �
(3)

where Mn ¼ rhLxLy=4 is the modal mass. The kinetic energy of a plate with a single point mass located at
xa ¼ ðxa; yaÞ is given by

T ¼
rh

2

Z Lx

0

Z Ly

0

_w2ðxÞdxdyþ
ma

2
_w2ðxaÞ (4)

where the first term on the right hand side of Eq. (4) corresponds to the kinetic energy associated with the
distributed mass of the plate and the second term corresponds to the kinetic energy associated with the discrete
mass ma. Using the orthogonality condition, an expression for the kinetic energy of the plate can be obtained
as

T ¼
1

2

X
mn

_q2
mn þ

ma

2

X
mn

X
jk

_qmn _qjkcmnðxaÞcjkðxaÞ. (5)

Similarly, for the simply supported plate loaded by a linear spring to ground of stiffness kb and located at
xb ¼ ðxb; ybÞ, an expression for the potential energy of the plate can be obtained as

V ¼
1

2

X
mn

o2
mnq2

mn þ
kb

2

X
mn

X
jk

qmnqjkcmnðxbÞcjkðxbÞ (6)

where omn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D=rh

p
ððmp=LxÞ

2
þ ðnp=LyÞ

2
Þ corresponds to the natural frequencies of the bare plate and D is

the flexural rigidity. Using Lagrange’s equation for a particular modal coordinate pq of the bare plate in free
vibration

@

@t

@T

@ _qpq

 !
�
@T

@qpq

þ
@V

@qpq

¼ 0 (7)

results in the following equation of motion for a mass and spring loaded plate:

€qpq þ
X
mn

ma €qmncmnðxaÞcpqðxaÞ þ
X
mn

kbqmncmnðxbÞcpqðxbÞ þ o2
pqqpq ¼ 0. (8)
Fig. 1. A simply supported plate with randomly located point masses and springs to ground.
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For the simply supported plate loaded by Nm number of point masses, and Nk linear springs as shown in
Fig. 1, the equation of motion becomes

€qpq þ
XNm

a¼1

X
mn

ma €qmncmnðxaÞcpqðxaÞ þ
XNk

b¼1

X
mn

kbqmncmnðxbÞcpqðxbÞ þ o2
pqqpq ¼ 0. (9)

For the mass and/or spring loaded plates, the natural frequencies were solved by the following eigenvalue
analysis ðK� o2MÞC ¼ 0. This was performed in MatLab using the command eig, which returns a diagonal
matrix of eigenvalues and a matrix of corresponding eigenfunctions. In the absence of the added
mass/stiffness, the equation of motion reduces to that for a homogeneous simply supported plate,
corresponding to €qpq þ o2

pqqpq ¼ 0. The mass and stiffness matrices for the bare plate are diagonal. The
addition of point masses and/or springs leads to extra terms appearing in the off diagonal elements of the mass
and stiffness matrices, respectively, due to the coupling between the eigenfunctions.

2.2. Plates coupled by springs

Consider two simply supported plates coupled by a linear spring of stiffness k at a random location xi on
each plate (i ¼ 1,2 is the plate number). The total kinetic energy of the system is

T ¼
r1h1

2

Z Lx1

0

Z Ly1

0

_w2
1ðxÞdxdyþ

r2h2

2

Z Lx2

0

Z Ly2

0

_w2
2ðxÞdxdy ¼

1

2

X
mn

_q2
1;mn þ

1

2

X
mn

_q2
2;mn (10)

Making use of the eigenfunction orthogonality conditions, the potential energy of the coupled plate system is
given by

V ¼
1

2

X
mn

o2
1;mnq2

1;mn þ
1

2

X
mn

o2
2;mnq2

2;mn þ
k

2
ðw1ðx1Þ � w2ðx2ÞÞ

2 (11)

where o1;mn and o2;mn are the natural frequencies of each uncoupled plate. The last term on the right hand side
of Eq. (11) describes the coupling dynamics due to the randomly located spring. Differentiating the kinetic and
potential energies with respect to the modal coordinate pq of the uncoupled plates and substituting into
Lagrange’s equation, the equations of motion for the spring-coupled plates are given by

€q1;pq þ kf1;pqðx1Þ
X
mn

q1;mnf1;mnðx1Þ � kf1;pqðx1Þ
X

jk

q2;jkf2;jkðx2Þ þ o2
1;pqq1;pq ¼ 0 (12)

€q2;pq þ kf2;pqðx2Þ
X

jk

q2;jkf2;jkðx2Þ � kf2;pqðx2Þ
X
mn

q1;mnf1;mnðx1Þ þ o2
2;pqq2;pq ¼ 0 (13)

Eqs. (12) and (13) can easily be expanded to account for N number of randomly located springs, as shown in
Fig. 2. The natural frequencies of the spring-coupled plates were obtained by eigenvalue analysis using
MatLab.

2.3. Plate with torsional edge springs

The equation of motion in modal space of a simply supported rectangular plate with torsional springs
attached along the edges of the plate has been previously presented for a single spring located at each plate
Fig. 2. Simply supported plates coupled by randomly located springs.



ARTICLE IN PRESS

Fig. 3. Simply supported plate with randomly located torsional springs at its boundary edges.
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edge [13]. For Nr number of torsional springs of stiffness Kt located at each simply supported edge
corresponding to ðxa; 0Þ, ð0; yaÞ, ðxb;LyÞ and ðLx; ybÞ, as shown in Fig. 3, the equation of motion for a
particular modal coordinate pq of the bare plate can be obtained as

€qpq þ
XNr

a¼1

X
mn

Kt

Mn

qmn

mp
Lx

� �
pp
Lx

� �
fnðyaÞfqðyaÞ þ

XNr

a¼1

X
mn

Kt

Mn

qmn

np
Ly

� �
qp
Ly

� �
fmðxaÞfpðxaÞ

þ
XNr

b¼1

X
mn

Kt

Mn

qmn

mp
Lx

� �
pp
Lx

� �
ð�1Þmð�1ÞpfnðybÞfqðybÞ

þ
XNr

b¼1

X
mn

Kt

Mn

qmn

np
Ly

� �
qp
Ly

� �
ð�1Þnð�1ÞqfmðxbÞfpðxbÞ þ o2

pqqpq ¼ 0 (14)

where Mn ¼ rhLxLy=4 is the modal mass. The natural frequencies of the plate with torsional edge springs
were obtained by eigenvalue analysis using MatLab.
3. Statistical overlap factor applied to dynamic systems

3.1. Statistical overlap factor

The statistical overlap factor is defined by [11,14]

S ¼
2s
m
¼

2fvar½Don�g
1=2

m
(15)

where s is the standard deviation of any particular natural frequency on from its mean value due to
uncertainties in the system, and is measured across an ensemble of random structures. m is the mean frequency
spacing (inverse of the modal density). Statistical overlap occurs when the random variation in an individual
natural frequency of a system exceeds the mean frequency spacing. Manohar and Keane [11] showed that
S can be related to the frequency beyond which the mean response of a structure exhibits stationary
(non-oscillatory) behaviour. For coupled transversely vibrating beams or axially vibrating rods, oscillations in
the statistics of the power spectra were shown to be caused by the occurrence of resonances as well as the
variation of mode shape values at the coupling points and driving location for point forcing. The statistical
overlap factor was used to identify the frequency beyond which the effect of individual natural frequencies and
mode shapes ceased to dominate variations in the mean response. It was shown that for coupled beams, steady
mean behaviour occurs for frequencies beyond a statistical overlap factor value of 2 for rain-on-the-roof
excitation, and for frequencies beyond a statistical overlap factor value of 3 for point force excitation.
For uncoupled systems, where the variation in the mean response is not affected by the mode shapes at the
coupling point, a value of S greater than 1 for rain-on-the-roof excitation was shown to guarantee smooth
mean behaviour. The statistical overlap factor is thereby a useful parameter to obtain a measure of the amount
of mixing and veering that occurs between modes across an ensemble of nominally identical systems with
uncertainties. In the following sections, approximate expressions for S for the mass and spring loaded plates
are obtained by deriving the ensemble variance in the change of any particular natural frequency.
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3.2. Perturbation analysis for a plate with added masses or linear springs

Using a first-order perturbation analysis, an approximate formula is developed for the ensemble variance in
the change of any particular natural frequency, var[Domn], which arises from adding point masses to the bare
plate. The addition of Nm randomly located masses of size ma to a plate will modify the mnth natural
frequency of the bare plate as follows:

o2
mn ! o2

mn 1�
XNm

a¼1

mac
2
mnðxaÞ

" #
(16)

and hence

Domn � �
omn

2

X
a

mac
2
mnðxaÞ (17)

where cmnðxÞ ¼ fmnðxÞ=
ffiffiffiffiffiffiffiffi
Mn

p
and fmnðxÞ ¼ fmðxÞfnðyÞ. Eq. (18) follows from Rayleigh’s quotient [12] on the

assumption that the change in the natural frequency is small. Now if ymn is defined as

ymn ¼
X

a

mac
2
mnðxaÞ (18)

and noting that E½c2
mn� ¼ 1=M, where M ¼ 4Mn is the total mass of the bare plate, then the mean of ymn

becomes

E½ymn� ¼
X

a

maE½c
2
mnðxaÞ� ¼

Nmma

M
(19)

The variance of ymn is given by

var½ymn� ¼ E½ðymnÞ
2
� � E½ymn�

2 ¼
X

a

m2
aðE½c

4
mnðxaÞ� � E½c2

mnðxaÞ�
2Þ (20)

Since the modes of the bare plate have been taken to be sinusoidal, so that E½c4
mn� ¼ ð9=4ÞE½c

2
mn�

2 [15], the
variance of ymn becomes

var½ymn� ¼ 1:25
Nmm2

a

M2
(21)

From Eqs. (17)–(21), it now follows that the variance in the value of any particular natural frequency with the
addition of Nm masses is given by

s2 ¼ var½Domn� ¼ var½ymn=2omn� ¼ 0:3125o2
mn

Nmm2
a

M2
(22)

Thus, from Eq. (15), an approximate expression for the statistical overlap factor is obtained as

S ¼
2s
m
�

1:118o
m

1ffiffiffiffiffiffiffi
Nm

p

� �
Nmma

M

� �
(23)

For given ma, Nm and M, the frequency o as S approaches unity can be calculated, defining the modal range
beyond which the occurrence of GOE statistics is expected to apply. The approximate expression for the
statistical overlap factor given by Eq. (23) is based on a first-order perturbation analysis and serves as a useful
guideline to the degree of statistical overlap at a specified frequency o, or conversely, to the frequency at which
the statistical overlap will first approach unity for the uncoupled system.

Similarly, an approximate formula for the statistical overlap factor arising from adding Nk linear springs to
ground at random locations xb on a simply supported plate can be developed. The mnth natural frequency of a
bare plate is modified by the addition of Nk springs, each of stiffness kb, as follows:

o2
mn ! o2

mn þ
XNk

b¼1

kbc
2
mnðxbÞ (24)
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and hence

Domn �
1

2omn

X
b

kbc
2
mnðxbÞ (25)

where cmn is the mnth mode shape of the bare plate scaled to unit generalised mass. Following a similar
procedure for the mass loaded plate, an approximate expression for the statistical overlap factor for a linear
spring loaded plate can be obtained as

S �
1:118

mo
1ffiffiffiffiffiffiffi
Nk

p

� �
Nkkb

M

� �
(26)
3.3. Perturbation analysis for a torsional edge spring loaded plate

In this section, an approximate formula for the statistical overlap factor is developed for the case of a simply
supported plate loaded by Nr number of torsional springs at each edge (Fig. 3). For torsional edge springs,
each of stiffness Kt, the mnth natural frequency of the bare plate is modified by

o2
mn ! o2

mn þ
XNr

a¼1

Kt

Mn

mp
Lx

� �2

f2
nðyaÞ þ

np
Ly

� �2

f2
mðxaÞ

 !
þ
XNr

b¼1

Kt

Mn

mp
Lx

� �2

f2
nðybÞ þ

np
Ly

� �2

f2
mðxbÞ

 !
(27)

and hence

Domn �
Kt

2omnMn

X
a

mp
Lx

� �2

f2
nðyaÞ þ

np
Ly

� �2

f2
mðxaÞ

 !
þ
X

b

mp
Lx

� �2

f2
nðybÞ þ

np
Ly

� �2

f2
mðxbÞ

 !
(28)

In this case let ymn be defined as

ymn ¼
Kt

Mn

X
a

mp
Lx

� �2

f2
nðyaÞ þ

np
Ly

� �2

f2
mðxaÞ

 !
þ
X

b

mp
Lx

� �2

f2
nðybÞ þ

np
Ly

� �2

f2
mðxbÞ

 !
(29)

Noting that M ¼ 4Mn, the mean of ymn becomes

E½ymn� ¼
4NrKt

M

mp
Lx

� �2

þ
np
Ly

� �2
( )

(30)

Also noting that E½f4
n� ¼ ð3=2ÞE½f

2
n�
2 [15], it can be shown that

var½ymn� ¼ E½ðymnÞ
2
� � E½ymn�

2 ¼
4NrK

2
t

M2

mp
Lx

� �4

þ
np
Ly

� �4
( )

(31)

s ¼ fvar½Domn�g
1=2 ¼ fvar½ymn=2omn�g

1=2 ¼

ffiffiffiffiffiffi
Nr

p
Kt

omnM

mp
Lx

� �4

þ
np
Ly

� �4
( )1=2

(32)

Eq. (32) can be further simplified in what follows: the x and y wavenumber components of the simply
supported plate can be written in terms of the free plate wavenumber kp and angle defining the direction of
propagation of the free wave y:

mp
Lx

� �
¼ kp cos y (33)

np
Ly

� �
¼ kp sin y (34)
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Averaging over y results in

mp
Lx

� �4

þ
np
Ly

� �4
( )1=2

¼

ffiffiffi
3
p

2
k2

p (35)

The plate wavenumber can be expressed in terms of the mean frequency spacing (inverse of the modal density)
by [15]

k2
p ¼

4po
mA

(36)

where A ¼ LxLy is the area of the plate. Substituting Eqs. (36) and (35) into (32) shows that the standard
deviation in the value of any particular natural frequency from its mean value across the ensemble is
independent of frequency:

s ¼
2
ffiffiffi
3
p

p
ffiffiffiffiffiffi
Nr

p
Kt

mAM
(37)

Hence, the resulting approximate expression of the statistical overlap factor for the torsional edge spring
loaded plate is also independent of frequency:

S ¼
4
ffiffiffi
3
p

p
ffiffiffiffiffiffi
Nr

p
Kt

m2AM
�

21:766

m2A

1ffiffiffiffiffiffi
Nr

p

� �
NrKt

M

� �
(38)
4. Modal spacing statistics

The modal spacing statistics of a dynamic system with symmetries such as a perfect rectangular plate or a
perfect box-shaped room results in the probability density function (pdf) of the spacings between successive
natural frequencies described by an exponential distribution [4]:

pðsÞ ¼ ae�as; sX0 (39)

where a ¼ 1/m and m is the mean spacing between neighbouring natural frequencies. A significant
characteristic of an exponential distribution is the absence of repulsion between modes, that is, p(0)a0.
The mean spacing can be estimated analytically as the inverse of the modal density, which is known for many
types of simple systems.

The natural frequencies of a random system are more accurately described by GOE statistics. One feature of
the GOE is that the distribution of the spacing between successive natural frequencies is Rayleigh, also known
as the ‘‘Wigner surmise’’ of random matrix theory [5]. The probability density of the Rayleigh function is given
by

pðsÞ ¼
s

c2
e�s2=2c2 ; sX0 (40)

where c ¼ m
ffiffiffiffiffiffiffiffi
2=p

p
. A characteristic of the Rayleigh distribution is the presence of repulsion, that is, p(0) ¼ 0,

due to veering between closely spaced modes, which results in a reduced probability of small frequency
spacings. Exponential and Rayleigh distributions are shown in Figs. 4(a) and (b), respectively.

The closeness of a modal spacing distribution to the exponential and Rayleigh distributions can be observed
using a probability plot, in which the modal spacing distribution is plotted against a theoretical distribution to
approximately form a straight line. The horizontal axis of the probability plot is the ordered statistic medians
NðiÞ for the given distribution which are determined by [16]

NðiÞ ¼ GðUðiÞÞ (41)

G is the inverse of the cumulative distribution function and U(i) are the uniform ordered statistic medians. The
inverse of the cumulative distribution function for the Rayleigh and exponential distributions are respectively
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Fig. 4. (a) Exponential distribution. (b) Rayleigh distribution.
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given by [17]

s ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnð1�UðiÞÞ

p
(42)

s ¼
� lnð1�UðiÞÞ

a
(43)

The uniform ordered statistic medians are defined as [16]

Uð1Þ ¼ 1�UðnÞ (44)

UðiÞ ¼
ði � 0:3175Þ

ðnþ 0:365Þ
for i ¼ 2; 3; . . . ; n� 1 (45)

UðnÞ ¼ 0:51=n (46)
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The vertical axis of the probability plot is the modal spacings arranged in increasing order. Rayleigh and
exponential distributions are shown in Fig. 5(a) on an exponential probability plot. This figure illustrates that
a true exponential distribution will exhibit a straight line with a 1:1 slope, although some deviation from a
straight line generally occurs at high values. In a Rayleigh probability plot shown in Fig. 5(b), the Rayleigh
distribution shows a straight line with a 1:1 slope while the exponential distribution deviates.
5. Results

Simulation results are presented for several ensembles of structures corresponding to a mass-loaded plate, a
linear spring-loaded plate, a mass-and-spring-loaded plate, two plates coupled by linear springs and a plate
with torsional springs. For the first three structures involving added masses and/or linear springs to ground,
rectangular simply supported plates of dimensions Lx ¼ 899mm, Ly ¼ 600mm and thickness h ¼ 2mm, with
material properties of aluminium (density r ¼ 2800 kg/m3, Young’s modulus E ¼ 70GPa, Poisson’s ratio
n ¼ 0.3) were used. Damping was included in the analysis by using a complex Young’s modulus E(1+jZ)
where Z ¼ 0.1 percent is the structural loss factor. Various combinations were investigated for different
numbers and values of the added masses and linear springs. Fifty ensembles were generated by adding the
masses and/or linear springs at random locations to each plate. Initially, ensembles consisting of 5, 10, 20 and
50 added masses and/or springs to ground were examined; where the masses are 0.2 percent of the bare plate
mass M and the linear springs have stiffness 0.5MN/m. In addition, three more ensembles were examined such
that the degree of randomness is constant for each ensemble. The degree of randomness is given by R ¼ Nmma

or R ¼ Nkkb. The three ensembles for the various plate structures with constant degree of randomness are
presented in Table 1. For the structure consisting of two plates coupled by linear springs, the same plate
dimensions and material parameters for the mass and/or spring loaded plates were used, with coupling springs
of stiffness 5MN/m. Fifty ensembles were generated by randomising the location of the coupling springs on
each plate. A rectangular steel plate with torsional springs at its boundary edges on all four sides was also
examined. Plate dimensions of Lx ¼ 1350mm, Ly ¼ 1200mm and thickness h ¼ 5mm, with material
properties of steel (density r ¼ 7800 kg/m3, Young’s modulus E ¼ 210GPa, Poisson’s ratio n ¼ 0.3) were
used. Damping was included in the analysis by using a complex Young’s modulus E(1+jZ) where Z ¼ 0.1
percent is the structural loss factor. Nr number of torsional springs of stiffness Kt were added on each edge.
Fifty ensembles were generated by locating the torsional springs at random positions along the edges of the
plate. For each of the aforementioned ensembles, the mean natural frequencies, their standard deviation and
the mean frequency spacing across the ensemble were calculated.
5.1. Mass-loaded plate

The statistical overlap factor curves for a mass-loaded plate are shown in Fig. 6. The ensembles consist of 5,
10, 20 and 50 added masses, where each mass is 0.2 percent of the bare plate mass. There is a steady increase in
statistical overlap factor with both increasing frequency and increasing randomness (defined by a greater
Table 1

Ensembles for the various plates with mass and stiffness perturbations.

Ensemble Structure

Mass-loaded plate Spring-loaded plate Mass-and-spring-loaded plate

1 Nm ¼ 1, m ¼ 10% of the bare

plate mass

Nk ¼ 1, k ¼ 25MN/

m

Nm ¼ 1, m ¼ 10% of the bare plate mass; Nk ¼ 1,

k ¼ 25MN/m

2 Nm ¼ 10, m ¼ 1% of the bare

plate mass

Nk ¼ 10,

k ¼ 2.5MN/m

Nm ¼ 10, m ¼ 1% of the bare plate mass; Nk ¼ 10,

k ¼ 2.5MN/m

3 Nm ¼ 50, m ¼ 0.2% of the bare

plate mass

Nk ¼ 50,

k ¼ 0.5MN/m

Nm ¼ 50, m ¼ 0.2% of the bare plate mass;

Nk ¼ 50, k ¼ 0.5MN/m

Each ensemble has a constant degree of randomness.
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Fig. 6. Statistical overlap factor for a plate with 5, 10, 20 and 50 added masses of the same value.

Fig. 7. Rayleigh distribution (black line) and pdf of the natural frequency spacings for a plate 5, 10, 20, and 50 added masses of the same

value. Frequency range is 3–12 kHz.
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number of added masses Nm for a given size ma). The linear increase in the statistical overlap factor with
frequency is confirmed by the first-order perturbation analysis for a mass-loaded plate given by Eq. (21).
Furthermore, the slope of the curves becomes steeper as the number of added masses increases. Small values
for the statistical overlap factor at lower frequencies is due to the fact that the lower modes are in well defined
positions, that is, the natural frequencies move by only a relatively small amount from their mean value. As
the frequency increases, the dynamic system becomes more sensitive to any structural uncertainty. The natural
frequencies move significantly and veer from one another, resulting in larger values for S. For each ensemble,
the curves for S tend to level off. This is attributed to the fact that as the frequency increases, the inertia force
generated by each mass also increases, until the masses effectively act as point constraints. The action of a
constraint by the added masses involves several mode shapes combining to produce a zero displacement at the
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constraint. This indicates that the results for S have saturated such that no further increase in statistical
overlap will occur with increasing frequency. Interestingly, whilst S levels off at a higher value for a greater
number of added masses, the frequency at which the curves for all masses level off is approximately the same
in each case. Fig. 6 shows that for a mass-loaded plate, increasing the number of masses results in a greater
degree of variation in the position of the natural frequencies.

Fig. 7 presents the pdf of the natural frequency spacings for one member from each of the four ensembles of
the mass-loaded plates. A pdf of the modal spacings for each dynamic system was obtained as follows: the
natural frequencies obtained from eigenvalue analysis of the equation of motion were arranged in ascending
order and the spacings between successive frequencies were obtained. The top 20 percent of modes were
discarded as the modal spacing was found to greatly increase for the highest order modes [12]. A histogram of
the natural frequency spacings was then generated and converted to a pdf by scaling to unit area. The mean
frequency spacing for each ensemble member was also calculated. The pdf of the natural frequency spacings
for a given modal range was then curve fitted with a Rayleigh spacing distribution using the mean frequency
spacing from an ensemble member for each of the mass-loaded plates. Increasing the number of masses did
not significantly affect the mean frequency spacing of the mass-loaded plates, which ranged from 15.7Hz for
5 added masses to 15.6Hz for 50 added masses. The probability distributions are presented for a frequency
range from 3 to 12 kHz, which approximately corresponds to the region shown in Fig. 6 where S begins to
level off for each ensemble. At lower frequencies, the modes are in well defined positions and hence will not
significantly contribute to any structural uncertainty. Fig. 8 shows a Rayleigh probability plot of the ordered
natural frequency spacings. The probability plot was generated by arranging the natural frequency spacings in
order and plotting them in relation to ordered statistic medians generated from a Rayleigh distribution. Figs. 7
and 8 show that as the number of masses increases and hence S increases, the distribution of the modal
spacings results in the closest match with a Rayleigh distribution.

The statistical overlap factors for the ensembles of a mass-loaded plate presented in Table 1, corresponding
to the case where each ensemble has the same degree of randomness, are shown in Fig. 9. S initially increases
with frequency for an increasing number of added masses, even though the amount of the added mass is
Fig. 8. Rayleigh probability plot of the ordered response (black points) and Rayleigh distribution line (grey line) of the frequency spacings

for a plate with 5, 10, 20, and 50 added masses of the same value. Frequency range is 3–12kHz.
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Fig. 9. Statistical overlap factor for a plate with 1, 10 and 50 added masses of different values, such that each ensemble has the same

degree of randomness.

Fig. 10. Rayleigh distribution (black line) and pdf of the natural frequency spacings for a plate with 1, 10 and 50 added masses of different

values. Frequency range is 3–12 kHz.
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decreasing. In each case, the curves for S level off. For 10 and 50 added masses, S levels off at approximately
the same frequency, indicating the frequency range beyond which the results have saturated such that the
response becomes independent of the type of uncertainty. For a single added mass, S is relatively constant at
all frequencies and significantly less than unity, indicating there is insufficient structural uncertainty for the
modes to mix and veer from one another. Fig. 10 shows the pdf of the natural frequency spacings for each
dynamic system in the frequency range from 3 to 12 kHz. These pdfs are compared to a Rayleigh distribution
using the mean frequency spacing, corresponding to 15.8, 15.7 and 15.6Hz for 1, 10 and 50 added masses,
respectively. For the ensembles presented, the greater statistical overlap factor occurs for 50 added masses,
resulting in the closest match to a Rayleigh distribution. These results are further confirmed in Fig. 11, which
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Fig. 11. Rayleigh probability plot of the ordered response (black points) and Rayleigh distribution line (grey line) of the frequency

spacings for a plate with 1, 10 and 50 added masses of different values. Frequency range is 3–12 kHz.
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Fig. 12. Exponential distribution (black line) and pdf of the natural frequency spacings for a bare plate.
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shows the ordered natural frequencies of a Rayleigh probability plot. The results for these ensembles
demonstrate that the value of S will increase for a greater number of perturbations, even though the degree of
randomness is the same in each case.

To compare the modal spacing statistics for dynamic systems with and without structural uncertainty, the
modal statistics of a bare simply supported rectangular plate was obtained. The modal density of the bare
plate (in the absence of added mass/stiffness) was calculated by n ¼ ðLxLy=4pÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, where

D ¼ Eh3=12ð1� v2Þ is the flexural rigidity. An aluminium plate of dimensions Lx ¼ 899mm, Ly ¼ 600mm
and thickness h ¼ 2mm results in a mean frequency spacing of m ¼ 1/nE70.5 rad/s (11.2Hz). Using the
Rayleigh–Ritz–Lagrange technique, the natural frequencies of the bare plate were obtained from eigenvalue
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analysis of the equation of motion, arranged in ascending order, and the spacings between successive
frequencies obtained. The mean frequency spacing of the bare plate was calculated to be approximately 11Hz,
which is in excellent agreement with the predicted modal spacing. The pdf of the natural frequency spacings
was then curve fitted to an exponential distribution, given by Eq. (39). Fig. 12 clearly shows that a dynamic
system with symmetries, as in the case of a bare simply supported rectangular plate, exhibits no repulsion
between modes and is described by an exponential distribution.

5.2. Spring-loaded plate

The statistical overlap factor curves for a spring-loaded plate are shown in Fig. 13. The ensembles consist of
5, 10, 20 and 50 added linear springs to ground, each of stiffness 0.5MN/m. Fifty configurations for each
ensemble were generated by attaching the springs at random locations across the surface of the plate.
In Fig. 13, the statistical overlap factor for each of the ensembles begins at a high value and then decreases
rapidly as frequency increases. All curves tend towards zero at high frequencies. This is attributed to the fact
that at higher frequencies, springs have less effect on the variation in the natural frequencies than at lower
frequencies. The inverse proportionality of the statistical overlap factor with frequency for spring-loaded
plates is confirmed by the approximate expression for S given by the perturbation analysis (Eq. (26)). Fig. 14
presents the pdf of the natural frequency spacings for one member of each of the ensembles in the frequency
range from 200Hz to 6 kHz. Fig. 14 also shows the Rayleigh distribution calculated using the mean frequency
spacings for each ensemble corresponding to 11.8, 11.7, 11.7 and 11.5Hz for 5, 10, 20 and 50 added springs,
respectively. Fig. 15 presents the Rayleigh probability plot of the ordered natural frequency spacings in the
frequency range 200Hz to 6 kHz. Figs. 14 and 15 indicate that the spring-loaded plates do not generate
sufficient randomness of the natural frequencies to result in a clear Rayleigh distribution of the modal
spacings. The closest match of the pdf of the modal spacings to a Rayleigh distribution is for 50 added springs.
The effect of added linear springs to ground is to vary the positions of the natural frequencies at low
frequencies, although this effect is rapidly diminished with increasing frequency. However, the addition of
linear springs to ground to the mass-loaded plates will have the effect of randomising the low order modes,
thus extending the modal range for the occurrence of GOE statistics to lower frequencies. This is examined in
the next section (Section 5.3).

The statistical overlap factors for the ensemble of a spring-loaded plate presented in Table 1, corresponding
to the case where each ensemble has the same degree of randomness, are shown in Fig. 16. It can be seen that
as the stiffness of the springs increases, the curves for S flatten. Similar to the case for a mass-loaded plate with
only one added mass, the S curve for a spring-loaded plate with only one added linear spring to ground is
relatively constant with frequency (and at a low value). The addition of just one spring (or mass) does not
generate enough uncertainty to result in variation of the natural frequencies from their mean value across the
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Fig. 13. Statistical overlap factors for a plate with 5, 10, 20 and 50 added linear springs to ground of the same stiffness.
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Fig. 14. Rayleigh distribution (black line) and pdf of the natural frequency spacings for a plate with 5, 10, 20, and 50 added linear springs

to ground of the same stiffness. Frequency range is 200Hz to 6 kHz.

Fig. 15. Rayleigh probability plot of the ordered response (black points) and Rayleigh distribution line (grey line) of the frequency

spacings for a plate with 5, 10, 20, and 50 linear springs to ground of the same stiffness. Frequency range is 200Hz to 6 kHz.
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Fig. 16. Statistical overlap factor for a plate with 1, 10 and 50 added linear springs to ground of different stiffness such that each ensemble

has the same degree of randomness.

Fig. 17. Rayleigh distribution (black line) and pdf of the natural frequency spacings for a plate with 1, 10 and 50 added linear springs to

ground of different stiffness. Frequency range is 200Hz to 6 kHz.
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ensemble. Increasing the number of springs results in an initially high value of S, even though the stiffness of
the springs is decreased. The stiffness of the springs also affects the slope of S, particularly at low frequencies.
Fig. 17 compares the natural frequency spacing distributions for each ensemble to Rayleigh distributions
calculated using the mean frequency spacing for each ensemble, for the frequency range from 200Hz to 6 kHz.
In this frequency range, the mean frequency spacings are 11.8, 11.7 and 11.5Hz for 1, 10 and 50 added springs.
The pdf of the modal spacings for the ensemble with the greatest statistical overlap in this frequency region,
corresponding to a plate with 10 added linear springs to ground, provides the closest match to a Rayleigh
distribution. These results are further confirmed in Fig. 18, which compares the ordered natural frequencies of
the Rayleigh probability plot to a Rayleigh distribution line. It is interesting to note that for a spring-loaded
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Fig. 18. Rayleigh probability plot of the ordered response (black points) and Rayleigh distribution line (grey line) of the frequency

spacings for a plate with 1, 10 and 50 linear springs to ground of different stiffness. Frequency range is 200Hz to 6 kHz.
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Fig. 19. Statistical overlap factor for a plate with 5, 10, 20 and 50 added masses of the same value and linear springs to ground of the same

stiffness.
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plate, a greater number of added springs do not generate a better Rayleigh distribution and this is attributed to
the very low stiffness of the attached springs. As the springs decrease in stiffness, their effect on the low
frequency plate modes also decreases.

5.3. Mass-and-spring-loaded plate

The statistical overlap factor curves for a mass-and-spring-loaded plate are shown in Fig. 19. The ensembles
correspond to plates with 5, 10, 20 and 50 added masses and linear springs to ground, and were generated by
randomising the positions of the masses and springs. Each mass is 0.2 percent of the bare plate mass and each
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spring has a stiffness of 0.5 MN/m. In Fig. 19, for each of the ensembles, S begins at a high value, decreases
and then levels off to a constant value. The larger the amount of added uncertainty, the greater the initial
value of S at a low frequency. This is attributed to the added springs, which affect the variation of the low
order modes. For the frequency beyond which a dip in the S curves occurs, the added masses are responsible
for the variation in the natural frequencies. This is due to the inertia of the masses becoming more significant
as frequency increases. When the statistical overlap factor curves level off, this indicates the frequency beyond
which the results have saturated, such that the natural frequency statistics have become independent of the
frequency and type of uncertainty. The addition of both masses and springs to a plate has resulted in the
S curves becoming flatter with frequency when compared to the results for the mass-loaded plates (Fig. 6) and
spring-loaded plates (Fig. 13).

Fig. 20 presents the pdf of the natural frequency spacings for one member from each of the four ensembles.
Also shown in Fig. 20 are the Rayleigh distributions which were calculated using mean frequency spacings of
14.5, 14.5, 14.4 and 14.2Hz for 5, 10, 20 and 50 added masses and springs, respectively. The mean frequency
spacings, pdfs and Rayleigh distributions were obtained for a frequency range from 300Hz to 12 kHz, that is,
for the entire frequency range. A Rayleigh probability plot of the ordered natural frequency spacings is
compared to a Rayleigh distribution line in Fig. 21. In Figs. 20 and 21, a closer match to a Rayleigh
distribution is observed as the number of masses and springs increases.

The statistical overlap factors for the ensembles of a mass-and-spring-loaded plate presented in Table 1,
corresponding to the case where each ensemble has the same degree of randomness, are shown in Fig. 22.
Similar to the results presented previously for a mass or spring loaded plate, the statistical overlap for a plate
with only a single added mass and linear spring to ground is relatively constant with frequency and at a low
value. For a plate with a greater number of added masses and springs, S has a higher initial value which is
attributed to the effect of the springs. As the frequency increases, a higher S value also occurs for a greater
number of added masses. The slope of S is also affected by the different values and stiffness of the added
masses and springs. Fig. 23 compares the pdf of the natural frequency spacings for each dynamic system to a
Fig. 20. Rayleigh distribution (black line) and pdf of the natural frequency spacings for a plate with 5, 10, 20, and 50 masses and linear

springs to ground of the same size and stiffness. Frequency range is 300Hz to 12 kHz.
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Fig. 21. Rayleigh probability plot of the ordered response (black points) and Rayleigh distribution line (grey line) of the frequency

spacings for a plate with 5, 10, 20, and 50 added masses and linear springs to ground of the same value and stiffness. Frequency range is

300Hz to 12 kHz.
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Fig. 22. Statistical overlap factor for a plate with 1, 10 and 50 added masses and linear springs to ground of different values and stiffness,

such that each ensemble has the same degree of randomness.
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Rayleigh distribution calculated using mean frequency spacings of 14.6, 14.5 and 14.2Hz for 1, 10 and
50 added masses and springs. The mean frequency spacings, pdfs and Rayleigh distributions were obtained for
a frequency range from 300Hz to 12 kHz. The pdfs of the modal spacings for both 10 and 50 added masses
and springs are very similar and are further confirmed by Fig. 24, which presents the closeness of the Rayleigh
probability distributions to a Rayleigh distribution line. The similarity between the results in adding 10 and
50 masses and springs to a plate such that the degree of randomness is the same is attributed to the fact that
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Fig. 23. Rayleigh distribution (black line) and pdf of the natural frequency spacings for a plate with 1, 10 and 50 masses and linear springs

to ground of different values and stiffness. Frequency range is 300Hz to 12 kHz.
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both masses and springs are used to vary the properties of the plate, which affects both the low and high
frequency modes. The values of the added masses and stiffness of the springs also affect the natural frequency
statistics.

An interesting result for the statistical overlap factor for a mass-and-spring-loaded plate with collocated
masses and springs is presented in Fig. 25. Fifty masses and collocated linear springs to ground were added at
random locations, where the amount of each mass is 0.2 percent of the bare plate mass and the springs each
have stiffness of 0.5MN/m. Fig. 25 shows that there is a distinct dip in the statistical overlap factor curve at
which the value for S is nearly zero. The frequency at which this dip occurs corresponds to the natural
frequency for an equivalent single dof spring-mass system in terms of the added masses and springs, that is,
on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbNk=maNm

p
� 9098 rad=s (1448Hz). At this frequency, the impedance of the added masses and

springs is low and hence are not generating significant structural uncertainty on the plate. If maNmbkbNk

such that on � 0, then the S curves would tend towards those shown in Fig. 6 for added masses only.
Conversely, if maNm5kbNk such that on !1, the S curves would tend towards those shown in Fig. 13 for
added springs only.

5.4. Two plates coupled by springs

The statistical overlap factor for two plates coupled by linear springs are shown in Fig. 26. The ensembles
consist of two plates coupled by 5, 10, 20 and 50 springs, where each spring has a stiffness of 5MN/m. The
statistical overlap factor for each of the ensembles is mainly constant across the frequency range from 300Hz
to 5 kHz. This indicates that the value of S has become saturated and will not significantly increase as
frequency increases. However, the value of S increases for a greater number of coupling springs.

Fig. 27 presents the pdf of the natural frequency spacings for one member from each of the four ensembles
of the two plates coupled by linear springs. The pdfs are compared to a Rayleigh distribution calculated from
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Fig. 24. Rayleigh probability plot of the ordered response (black points) and Rayleigh distribution line (grey line) of the frequency

spacings for a plate with 1, 10 and 50 masses and linear springs to ground of different values and stiffness. Frequency range is 300Hz to

12 kHz.
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Fig. 25. Statistical overlap factor for a mass-and-spring-loaded plate. Results are presented for 50 collocated masses and linear springs to

ground attached to the plate at random locations.
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the mean frequency spacing for each ensemble corresponding to 7.1, 7.1, 7.3 and 7.5Hz for 5, 10, 20 and 50
coupling springs. The mean frequency spacing does not significantly vary for the ensembles. Fig. 28 compares
the Rayleigh probability plot of the ordered natural frequency spacings in the frequency range from 300Hz to
5 kHz to a Rayleigh distribution line. Figs. 27 and 28 show that increasing the number of coupling springs
results in a closer match to a Rayleigh distribution.
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Fig. 26. Statistical overlap factor for two plates coupled by 5, 10, 20 and 50 linear springs of the same stiffness.

Fig. 27. Rayleigh distribution (black line) and pdf of the natural frequency spacings for two plates coupled by 5, 10, 20, and 50 springs of

the same stiffness. Frequency range is 300Hz to 5 kHz.
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5.5. Plate with torsional edge springs

Simulation results are presented for an ensemble of rectangular steel plates to which torsional springs to
ground were applied along the simply supported boundary edges of the plates. Fig. 29 presents the statistical
overlap factors for ensembles consisting of 50 plates to which 10 torsional springs of stiffness 5Nm/rad,
5 kNm/rad and 5MNm/rad were randomly positioned along each edge. For low values of torsional spring
stiffness (Kt ¼ 5Nm/rad), the value of the statistical overlap factor curves are nearly zero. The value of
S increases as both the torsional stiffness and frequency increases. For each ensemble, the curves for S tend to
level off. In Fig. 30, the pdfs of the natural frequency spacings for one member from each of the ensembles are
compared to a Rayleigh distribution for a frequency range from 2 to 5 kHz. The corresponding mean
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Fig. 28. Rayleigh probability plot of the ordered response (black points) and Rayleigh distribution line (grey line) of the frequency

spacings for the two plates coupled by 5, 10, 20, and 50 springs of the same stiffness. Frequency range is 300Hz to 5 kHz.
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Fig. 29. Statistical overlap factor for a plate with torsional edge springs of stiffness 5Nm/rad, 5 kNm/rad and 5MNm/rad attached at

random locations.
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frequency spacings are 10.1, 10.2 and 10.3Hz for the torsional springs of stiffness 5Nm/rad, 5 kNm/rad and
5MNm/rad, respectively. For a fixed number of torsional springs at the plate boundary edges, increasing the
spring stiffness does not significantly affect the mean frequency spacing for the different ensembles. Fig. 31
compares the Rayleigh probability plot of the ordered natural frequency spacings to a Rayleigh distribution
line. The results presented in Figs. 30 and 31 show that a Rayleigh distribution of the modal spacings is only
achieved for high values of torsional spring stiffness (5MNm/rad) and is attributed to the fact that the large
torsional stiffness is effectively clamping the plates at the spring locations.
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Fig. 30. Rayleigh distribution (black line) and pdf of the natural frequency spacings for a plate with torsional edge springs of stiffness

5Nm/rad, 5 kNm/rad and 5MNm/rad. Frequency range is 2–5 kHz.

Fig. 31. Rayleigh probability plot of the ordered response (black points) and Rayleigh distribution line (grey line) of the frequency

spacings for a plate with torsional edge springs of stiffness 5Nm/rad, 5 kNm/rad and 5MNm/rad. Frequency range is 2–5 kHz.
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Fig. 32. Statistical overlap factor for a plate with torsional edge springs of stiffness 5Nm/rad. The dotted lines represent the

corresponding values for S from the perturbation analysis.
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Fig. 33. Statistical overlap factor for a plate with torsional edge springs of stiffness 5 kNm/rad. The dotted lines represent the

corresponding values for S from the perturbation analysis.
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The statistical overlap factor was further investigated for the torsional edge spring plates with Nr number of
torsional springs of stiffness Kt on each simply supported edge. Ensembles corresponding to 50 plates with 1,
10 and 20 added torsional springs to ground were generated by randomising the position of the springs, for a
low value of torsional spring stiffness (5Nm/rad) and higher value (5 kNm/rad). For the various Kt, Nr

combinations, the mean natural frequencies, their standard deviation and the mean frequency spacing across
the ensemble were calculated from the eigenvalue analysis of Eq. (14). Using Eq. (15), the statistical overlap
factor of the plate ensembles for the different Kt, Nr combinations were obtained and the trendline curves are
presented in Fig. 32 (Kt ¼ 5Nm/rad) and Fig. 33 (Kt ¼ 5 kNm/rad). Using the ensemble mean frequency
spacing for a given Kt, Nr combination, the values from the approximate expression developed for S given by
Eq. (38) are also shown in Figs. 32 and 33 as dotted lines. Fig. 32 shows that for low values of torsional spring
stiffness (5Nm/rad), the statistical overlap factor curves are nearly constant with frequency. Very good
agreement between the statistical overlap curves for the plate ensembles with edge springs of 5Nm/rad and the
values for S obtained by the perturbation analysis can also be observed. Fig. 33 shows that the statistical
overlap factor tends to increase as both the value of Kt and number of added springs increase. For large values
of Kt, the springs will act has a clamp and the perturbation analysis is no longer valid. In addition, for large
numbers of added springs, the springs are separated by less than half a wavelength for which the perturbation
analysis is not valid.
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6. Conclusions

Engineering structures are complex in geometry and generally possess variability in their material or
geometric properties. This work investigates the extent to which Gaussian orthogonal ensemble (GOE)
statistics is applicable to the natural frequencies of practical engineering structures. A range of structural
uncertainties were investigated corresponding to uncertainty due to mass and stiffness perturbations,
uncertainty at the boundaries of a structure and uncertainty in the coupling between the subsystems of a
structure. For each structure, the effect of the different types of uncertainty and the degrees of uncertainty on
the natural frequency statistics has been investigated in detail. Based on a first-order perturbation analysis, an
approximate expression for the statistical overlap factor has been developed for mass and spring loaded plates.

A summary on the major findings for the natural frequency statistics are as follows:
�
 Stiffness perturbation due to the addition of linear springs to ground was found to affect the lowest
frequency modes of a dynamic system. As the frequency increased, the effect of stiffness perturbations on
variation in the natural frequencies dramatically decreased.

�
 Mass perturbations were shown to affect the mid and high frequency modes of a structure. The variation in

the natural frequencies increased as the frequency increased, which is attributed to the inertia of the masses
becoming more significant. Variation in the natural frequencies also increased for a greater degree of
uncertainty, generated by either increasing the size of the added masses or the number of added masses.

�
 Increasing the number of added masses tended to have a greater effect on the variation in the natural

frequencies compared to increasing the size of the added masses. This is attributed to the fact that
increasing the number of masses results in greater deformation of the physical symmetry of a structure.

�
 For a given structure with uncertainty, it was observed that there is a frequency beyond which the structure

has saturated with uncertainty, such that any further increase in frequency or degree of uncertainty does
not affect the variation of the natural frequencies.

�
 For a sufficient amount of structural uncertainty, the modal spacings of a structure tend to a Rayleigh

distribution, which indicates universality of the modal statistics regardless of the type of uncertainty.
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